Enhancing Computational Promise of Neural Optimization for Graph-Theoretic Problems in Real-Time Environments

نویسندگان

  • GURSEL SERPEN
  • AMOL PATWARDHAN
چکیده

This paper demonstrates enhanced utility of neural static optimization algorithms for graph-theoretic problems in real-time environments under the assumption that fast computation cycles for near-optimal solutions are desirable. It assumes that a hardware realization of the neural optimization algorithm, which is then likely to fully exploit the high-degree of parallelism inherent to such optimization problems, is feasible. Accordingly, the paper discusses the application of an adaptive neural optimization scheme, which is based on a known model and training algorithm, on the shortest path computation for digraphs with unit edge costs, which proved to be “difficult” for neural optimization algorithms that were non-adaptive, i.e. Hopfield network and its stochastic derivatives. A simulation study demonstrates that the presented neural optimization scheme is able to compute near-optimal solutions for large instances of the problem, i.e. 1000-vertex graphs. The study concludes with the finding that a hardware realization of the presented neural optimization algorithm is poised to compute near-optimal solutions for a class of problems entailing graph search and its rich set of variants within a real-time environment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A METAHEURISTIC-BASED ARTIFICIAL NEURAL NETWORK FOR PLASTIC LIMIT ANALYSIS OF FRAMES

Despite the advantages of the plastic limit analysis of structures, this robust method suffers from some drawbacks such as intense computational cost. Through two recent decades, metaheuristic algorithms have improved the performance of plastic limit analysis, especially in structural problems. Additionally, graph theoretical algorithms have decreased the computational time of the process impre...

متن کامل

A Framework for Adapting Population-Based and Heuristic Algorithms for Dynamic Optimization Problems

In this paper, a general framework was presented to boost heuristic optimization algorithms based on swarm intelligence from static to dynamic environments. Regarding the problems of dynamic optimization as opposed to static environments, evaluation function or constraints change in the time and hence place of optimization. The subject matter of the framework is based on the variability of the ...

متن کامل

OPTIMUM DESIGN OF DOUBLE CURVATURE ARCH DAMS USING A QUICK HYBRID CHARGED SYSTEM SEARCH ALGORITHM

This paper presents an efficient optimization procedure to find the optimal shapes of double curvature  arch  dams  considering  fluid–structure  interaction  subject  to  earthquake  loading. The optimization is carried out using a combination of the magnetic charged system search, big bang-big crunch algorithm and artificial neural network methods. Performing the finite element  analysis  dur...

متن کامل

IMPROVING COMPUTATIONAL EFFICIENCY OF PARTICLE SWARM OPTIMIZATION FOR OPTIMAL STRUCTURAL DESIGN

This paper attempts to improve the computational efficiency of the well known particle swarm optimization (PSO) algorithm for tackling discrete sizing optimization problems of steel frame structures. It is generally known that, in structural design optimization applications, PSO entails enormously time-consuming structural analyses to locate an optimum solution. Hence, in the present study it i...

متن کامل

A Neural Network Method Based on Mittag-Leffler Function for Solving a Class of Fractional Optimal Control Problems

In this paper, a computational intelligence method is used for the solution of fractional optimal control problems (FOCP)'s with equality and inequality constraints. According to the Ponteryagin minimum principle (PMP) for FOCP with fractional derivative in the Riemann- Liouville sense and by constructing a suitable error function, we define an unconstrained minimization problem. In the optimiz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007